English

Find the Equation of the Right Bisector of the Line Segment Joining the Points (3, 4) and (−1, 2). - Mathematics

Advertisements
Advertisements

Question

Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).

Answer in Brief

Solution

Let A (3, 4) and B (−1, 2) be the given points.
Let C be the midpoint of AB.

\[\therefore C \equiv \left( \frac{3 - 1}{2}, \frac{4 + 2}{2} \right) \equiv \left( 1, 3 \right)\]

\[\because \text { Slope of AB } = \frac{2 - 4}{- 1 - 3} = \frac{1}{2}\]

\[ \therefore \text { Slope of the perpendicular bisector of AB } = - 2\]

Thus, the equation of the perpendicular bisector of AB is

\[y - 3 = - 2\left( x - 1 \right)\]

\[ \Rightarrow 2x + y - 5 = 0\]

Hence, the required line is \[2x + y - 5 = 0\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.12 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.12 | Q 18 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


What can be said regarding a line if its slope is positive ?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×