Advertisements
Advertisements
Question
Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).
Solution
Let the given points be A (3, −1) and B (4, −2).
Let
Hence, the angle between the x-axis and the line joining the points (3, −1) and (4, −2) is
APPEARS IN
RELATED QUESTIONS
Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.
Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.
The slope of a line is double of the slope of another line. If tangent of the angle between them is
Find the slope of the lines which make the following angle with the positive direction of x-axis:
Find the slope of a line passing through the following point:
Find the slope of a line passing through the following point:
(3, −5), and (1, 2)
State whether the two lines in each of the following is parallel, perpendicular or neither.
Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)
Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .
Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).
Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.
Find the equation of a straight line with slope 2 and y-intercept 3 .
Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.
If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.
Find the angles between the following pair of straight lines:
3x + y + 12 = 0 and x + 2y − 1 = 0
Find the angles between the following pair of straight lines:
x − 4y = 3 and 6x − y = 11
Find the angles between the following pair of straight lines:
(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.
Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.
The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is
Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.
If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.
The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.
Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
P1, P2 are points on either of the two lines
Slope of a line which cuts off intercepts of equal lengths on the axes is ______.
The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.
Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.
Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.
If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.
The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 =
The line
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) |
The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) 2x – y = 4 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) x + y – 5 = 0 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) x – y –1 = 0 |
(d) Equally inclined to the axes is | (iv) 3x – 4y – 1 = 0 |