English

Find the Angle Between X-axis and the Line Joining the Points (3, −1) and (4, −2). - Mathematics

Advertisements
Advertisements

Question

Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).

Answer in Brief

Solution

Let the given points be A (3, −1) and B (4, −2).

Slope of AB = 2+143=1 

Let θ be the angle between the x-axis and AB.

tanθ=1

θ=tan1(1)=3π4

Hence, the angle between the x-axis and the line joining the points (3, −1) and (4, −2) is 3π4.

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 19 | Page 14

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


The slope of a line is double of the slope of another line. If tangent of the angle between them is 13, find the slopes of the lines.


Find the slope of the lines which make the following angle with the positive direction of x-axis: π3


Find the slope of a line passing through the following point:

(at12,2at1) and (at22,2at2)


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


P1, P2 are points on either of the two lines -3|x| = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = (2±3)(x-2).


The line xa+yb = 1 moves in such a way that 1a2+1b2=1c2, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) (-13,113),(43,73)
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) (1,125),(-3,165)

The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.