English

Prove that the Straight Lines (A + B) X + (A − B ) Y = 2ab, (A − B) X + (A + B) Y = 2ab and X + Y = 0 Form an Isosceles Triangle Whose Vertical Angle is 2 Tan−1 - Mathematics

Advertisements
Advertisements

Question

Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].

Answer in Brief

Solution

The given lines are
(a + b) x + (a − b ) y = 2ab      ... (1)
(a − b) x + (a + b) y = 2ab       ... (2)
x + y = 0                                    ... (3)
Let m1m2 and m3 be the slopes of the lines (1), (2) and (3), respectively.
Now,

Slope of the first line = m1 = \[- \left( \frac{a + b}{a - b} \right)\]

Slope of the second line = m2 = \[- \left( \frac{a - b}{a + b} \right)\]

Slope of the third line = m3 = \[- 1\] 

Let \[\theta_1\]  be the angle between lines (1) and (2),  \[\theta_2\] be the angle between lines (2) and (3) and \[\theta_3\] be the angle between lines (1) and (3).

\[\therefore \tan \theta_1 = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]

\[ = \left| \frac{- \left( \frac{a + b}{a - b} \right) + \frac{a - b}{a + b}}{1 + \frac{a + b}{a - b} \times \frac{a - b}{a + b}} \right|\]

\[ \Rightarrow \tan \theta_1 = \left| \frac{2ab}{a^2 - b^2} \right|\]

\[ \Rightarrow \theta_1 = \tan^{- 1} \left| \frac{2ab}{a^2 - b^2} \right|\]

\[ = 2 \tan^{- 1} \left( \frac{a}{b} \right)\]

\[\therefore \tan \theta_2 = \left| \frac{m_2 - m_3}{1 + m_2 m_3} \right|\]

\[ = \left| \frac{- \left( \frac{a - b}{a + b} \right) + 1}{1 + \frac{a - b}{a + b}} \right|\]

\[ \Rightarrow \tan \theta_2 = \left| \frac{b}{a} \right|\]

\[ \Rightarrow \theta_2 = \tan^{- 1} \left( \frac{b}{a} \right)\]

\[\therefore \tan \theta_3 = \left| \frac{m_1 - m_3}{1 + m_1 m_3} \right|\]

\[ = \left| \frac{- \left( \frac{a + b}{a - b} \right) + 1}{1 + \frac{a + b}{a - b}} \right|\]

\[ \Rightarrow \tan \theta_3 = \left| \frac{b}{a} \right|\]

\[ \Rightarrow \theta_3 = \tan^{- 1} \left( \frac{b}{a} \right)\]

Here,

\[\theta_2 = \theta_3 \text { and } \theta = 2 \tan^{- 1} \left( \frac{a}{b} \right)\]

Hence, the given lines form an isosceles triangle whose vertical angle is \[2 \tan^{- 1} \left( \frac{a}{b} \right)\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.13 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.13 | Q 6 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×