मराठी

Prove that the Straight Lines (A + B) X + (A − B ) Y = 2ab, (A − B) X + (A + B) Y = 2ab and X + Y = 0 Form an Isosceles Triangle Whose Vertical Angle is 2 Tan−1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].

थोडक्यात उत्तर

उत्तर

The given lines are
(a + b) x + (a − b ) y = 2ab      ... (1)
(a − b) x + (a + b) y = 2ab       ... (2)
x + y = 0                                    ... (3)
Let m1m2 and m3 be the slopes of the lines (1), (2) and (3), respectively.
Now,

Slope of the first line = m1 = \[- \left( \frac{a + b}{a - b} \right)\]

Slope of the second line = m2 = \[- \left( \frac{a - b}{a + b} \right)\]

Slope of the third line = m3 = \[- 1\] 

Let \[\theta_1\]  be the angle between lines (1) and (2),  \[\theta_2\] be the angle between lines (2) and (3) and \[\theta_3\] be the angle between lines (1) and (3).

\[\therefore \tan \theta_1 = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]

\[ = \left| \frac{- \left( \frac{a + b}{a - b} \right) + \frac{a - b}{a + b}}{1 + \frac{a + b}{a - b} \times \frac{a - b}{a + b}} \right|\]

\[ \Rightarrow \tan \theta_1 = \left| \frac{2ab}{a^2 - b^2} \right|\]

\[ \Rightarrow \theta_1 = \tan^{- 1} \left| \frac{2ab}{a^2 - b^2} \right|\]

\[ = 2 \tan^{- 1} \left( \frac{a}{b} \right)\]

\[\therefore \tan \theta_2 = \left| \frac{m_2 - m_3}{1 + m_2 m_3} \right|\]

\[ = \left| \frac{- \left( \frac{a - b}{a + b} \right) + 1}{1 + \frac{a - b}{a + b}} \right|\]

\[ \Rightarrow \tan \theta_2 = \left| \frac{b}{a} \right|\]

\[ \Rightarrow \theta_2 = \tan^{- 1} \left( \frac{b}{a} \right)\]

\[\therefore \tan \theta_3 = \left| \frac{m_1 - m_3}{1 + m_1 m_3} \right|\]

\[ = \left| \frac{- \left( \frac{a + b}{a - b} \right) + 1}{1 + \frac{a + b}{a - b}} \right|\]

\[ \Rightarrow \tan \theta_3 = \left| \frac{b}{a} \right|\]

\[ \Rightarrow \theta_3 = \tan^{- 1} \left( \frac{b}{a} \right)\]

Here,

\[\theta_2 = \theta_3 \text { and } \theta = 2 \tan^{- 1} \left( \frac{a}{b} \right)\]

Hence, the given lines form an isosceles triangle whose vertical angle is \[2 \tan^{- 1} \left( \frac{a}{b} \right)\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.13 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.13 | Q 6 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is positive ?


What can be said regarding a line if its slope is negative?


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×