मराठी

Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).

बेरीज

उत्तर

Given that equation of the hypotenuse is 3x + 4y = 4 and opposite vertex is (2, 2)

Slope BC = `(-3)/4`


Let slope of AC be m

∴ tan 45° = `|(m + 3/4)/(1 + ((-3)/4))|`

⇒ 1 = `|(4m + 3)/(4 - 3m)|`

⇒ `(4m + 3)/(4 - 3m)` = ± 1

Taking (+) sign,

`(4m + 3)/(4 - 3m)` = 1

⇒ 4m + 3 = 4 – 3m

⇒ 7m = 1

⇒ m = `1/7`

Taking (–) sign,

`(4m + 3)/(4 - 3m)` =– 1

⇒ 4m + 3 = – 4 + 3m

⇒ 4m – 3m = – 3 – 4

⇒ m = – 7

∴  Equation of AC with slope `(1/7)` is 

y – 2 = `1/7(x - 2)`

⇒ 7y – 14 = x – 2

⇒ x – 7y + 12 = 0

Equation of AC with slope (– 7) is

y – 2 = – 7(x – 2)

⇒ y – 2 = – 7x + 14

⇒ 7x + y – 16 = 0

Hence, the required equation are x – 7y + 12 = 0 and 7x + y – 16 = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 12 | पृष्ठ १७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


What can be said regarding a line if its slope is positive ?


The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×