मराठी

If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.

बेरीज

उत्तर

Equation of the base AB of a ΔABC is x + y = 2

In ΔABD,

sin 60° = `"AD"/"AB"`

⇒ `sqrt(3)/2 = "AD"/"AB"`

⇒ AD = `sqrt(3)/2 "AB"`


Length of perpendicular from A(2, – 1) to the line x + y = 2 is
AD = `|(1 xx 2 + 1 xx -1 - 2)/sqrt((1)^2 + (1)^2)|`

⇒ `sqrt(3)/2 "AB" = |(2 - 1 - 2)/sqrt(2)| = |(-1)/sqrt(2)|`

⇒ `sqrt(3)/2 "AB" = 1/sqrt(2)`

⇒ AB = `sqrt(2)/sqrt(2)`

Hence, the required length of side = `sqrt(2/3)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 13 | पृष्ठ १७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[- \frac{\pi}{4}\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is  zero ?


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×