मराठी

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.

पर्याय

  • x – y = 5

  • x + y = 5

  • x + y = 1

  • x – y = 1

MCQ
रिकाम्या जागा भरा

उत्तर

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is x + y = 5.

Explanation:


Equation of line ‘l’ is given by y – y1 = m(x – x1).

Since l passing through the point P(3, 2).

∴ y – 2 = m(x – 3)

⇒ y = mx + 2 – 3m   .....(i)

Since it is given that lines y = x

And ‘l’ are perpendicular to each other

∴ `"m" xx1`= –1   .....`[because "m"_1 xx "m"_2 = - 1]`

m = –1

Put m = – 1 in eqn. (i), we get

y = –x + 2 – 3(–1)

y = –x + 5

x + y = 5

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १८०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 24 | पृष्ठ १८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×