हिंदी

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.

विकल्प

  • x – y = 5

  • x + y = 5

  • x + y = 1

  • x – y = 1

MCQ
रिक्त स्थान भरें

उत्तर

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is x + y = 5.

Explanation:


Equation of line ‘l’ is given by y – y1 = m(x – x1).

Since l passing through the point P(3, 2).

∴ y – 2 = m(x – 3)

⇒ y = mx + 2 – 3m   .....(i)

Since it is given that lines y = x

And ‘l’ are perpendicular to each other

∴ `"m" xx1`= –1   .....`[because "m"_1 xx "m"_2 = - 1]`

m = –1

Put m = – 1 in eqn. (i), we get

y = –x + 2 – 3(–1)

y = –x + 5

x + y = 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 24 | पृष्ठ १८०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is  zero ?


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×