Advertisements
Advertisements
प्रश्न
Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.
उत्तर
Let the image of A (3,8) be B (a,b). Also, let M be the midpoint of AB.
\[\therefore\text { Coordinates of M } = \left( \frac{3 + a}{2}, \frac{8 + b}{2} \right)\]
Point M lies on the line x + 3y = 7
\[\therefore \frac{3 + a}{2} + 3 \times \left( \frac{8 + b}{2} \right) = 7\]
\[\Rightarrow a + 3b + 13 = 0\] ... (1)
Lines CD and AB are perpendicular.
∴ Slope of AB \[\times\] Slope of CD = −1
\[\Rightarrow \frac{b - 8}{a - 3} \times \left( - \frac{1}{3} \right) = - 1\]
\[ \Rightarrow b - 8 = 3a - 9\]
\[\Rightarrow 3a - b - 1 = 0\] ... (2)
Solving (1) and (2) by cross multiplication, we get:
\[\frac{a}{- 3 + 13} = \frac{b}{39 + 1} = \frac{1}{- 1 - 9}\]
\[ \Rightarrow a = - 1, b = - 4\]
Hence, the image of the point (3, 8) with respect to the line mirror x + 3y = 7 is (−1, −4).
APPEARS IN
संबंधित प्रश्न
Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the slope of a line passing through the following point:
(3, −5), and (1, 2)
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).
Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .
What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?
What can be said regarding a line if its slope is zero ?
What can be said regarding a line if its slope is negative?
Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.
Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).
Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.
Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).
Find the equation of a straight line with slope − 1/3 and y-intercept − 4.
Show that the perpendicular bisectors of the sides of a triangle are concurrent.
The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.
Find the angles between the following pair of straight lines:
(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.
If θ is the angle which the straight line joining the points (x1, y1) and (x2, y2) subtends at the origin, prove that \[\tan \theta = \frac{x_2 y_1 - x_1 y_2}{x_1 x_2 + y_1 y_2}\text { and } \cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{{x_1}^2 + {y_1}^2}\sqrt{{x_2}^2 + {y_2}^2}}\].
The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are
Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.
If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?
If x + y = k is normal to y2 = 12x, then k is ______.
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.
Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.
The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.
One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.
The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.
The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.
Column C1 | Column C2 |
(a) The coordinates of the points P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x – 5y + 26 = 0 are |
(i) (3, 1), (–7, 11) |
(b) The coordinates of the point on the line x + y = 4, which are at a unit distance from the line 4x + 3y – 10 = 0 are |
(ii) `(- 1/3, 11/3), (4/3, 7/3)` |
(c) The coordinates of the point on the line joining A (–2, 5) and B (3, 1) such that AP = PQ = QB are |
(iii) `(1, 12/5), (-3, 16/5)` |
The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.
If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.