English

The Equation of the Line with Slope −3/2 and Which is Concurrent with the Lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is - Mathematics

Advertisements
Advertisements

Question

The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is

Options

  •  3x + 2y − 63 = 0

  •  3x + 2y − 2 = 0

  • 2y − 3x − 2 = 0

  • none of these

MCQ

Solution

 3x + 2y − 2 = 0

Given:
4x + 3y − 7 = 0      ... (1)
8x + 5y − 1 = 0      ... (2)
The equation of the line with slope \[- \frac{3}{2}\] is given below: \[y = - \frac{3}{2}x + c\] \[\Rightarrow \frac{3}{2}x + y - c = 0\]          ... (3)
The lines (1), (2) and (3) are concurrent.

\[\therefore \begin{vmatrix}4 & 3 & - 7 \\ 8 & 5 & - 1 \\ \frac{3}{2} & 1 & - c\end{vmatrix} = 0\]

\[ \Rightarrow 4\left( - 5c + 1 \right) - 3\left( - 8c + \frac{3}{2} \right) - 7\left( 8 - \frac{15}{2} \right) = 0\]

\[ \Rightarrow - 20c + 4 + 24c - \frac{9}{2} - 56 + \frac{105}{2} = 0\]

\[ \Rightarrow \frac{- 40c + 8 + 48c - 9 - 112 + 105}{2} = 0\]

\[ \Rightarrow 8c = 8\]

\[ \Rightarrow c = 1\]

On substituting c = 1 in \[y = - \frac{3}{2}x + c\], we get:

\[y = - \frac{3}{2}x + 1\]

\[ \Rightarrow 3x + 2y - 2 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 135]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 30 | Page 135

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

3x + 4y − 7 = 0 and 4x − 3y + 5 = 0


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


If x + y = k is normal to y2 = 12x, then k is ______.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×