Advertisements
Advertisements
Question
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
Options
(1, 1)
(2, 1)
(1, 2)
none of these
Solution
(1,1)
Let ax + by + c = 0 be the variable line. It is given that the algebraic sum of the distances
of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero.
\[\therefore \frac{a + b + c}{\sqrt{a^2 + b^2}} + \frac{2a + 0 + c}{\sqrt{a^2 + b^2}} + \frac{0 + 2b + c}{\sqrt{a^2 + b^2}} = 0\]
\[ \Rightarrow 3a + 3b + 3c = 0\]
\[ \Rightarrow a + b + c = 0\]
Substituting c = \[-\]a \[-\]b in ax + by + c = 0, we get:
\[ax + by - a - b = 0\]
\[ \Rightarrow a\left( x - 1 \right) + b\left( y - 1 \right) = 0\]
\[ \Rightarrow \left( x - 1 \right) + \frac{b}{a}\left( y - 1 \right) = 0\]
This line is of the form
\[L_1 + \lambda L_2 = 0\], which passes through the intersection of \[L_1 = 0\text { and } L_2 = 0,\] i.e.
x \[-\] 1 = 0 and y \[-\] 1 = 0.
\[\Rightarrow\] x = 1, y = 1
APPEARS IN
RELATED QUESTIONS
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
What are the points on the y-axis whose distance from the line `x/3 + y/4 = 1` is 4 units.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.
The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\] is
Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |