English

Show that the Perpendiculars Let Fall from Any Point on the Straight Line 2x + 11y − 5 = 0 Upon the Two Straight Lines 24x + 7y = 20 and 4x − 3y − 2 = 0 Are Equal to Each Other. - Mathematics

Advertisements
Advertisements

Question

Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.

Answer in Brief

Solution

et P(a, b) be any point on 2x + 11y − 5 = 0

\[\therefore\] 2a + 11b − 5 = 0 

\[\Rightarrow b = \frac{5 - 2a}{11} . . . \left( i \right)\]

Let d1 and d2 be the perpendicular distances from point P
on the lines 24x + 7y = 20 and 4x − 3y − 2 = 0, respectively.

\[d_1 = \left| \frac{24a + 7b - 20}{\sqrt{{24}^2 + 7^2}} \right| = \left| \frac{24a + 7b - 20}{25} \right|\]

\[ \Rightarrow d_1 = \left| \frac{24a + 7 \times \frac{5 - 2a}{11} - 20}{25} \right| \left[ \text { from } (1) \right]\]

\[ \Rightarrow d_1 = \left| \frac{50a - 37}{55} \right|\]

Similarly,

\[d_2 = \left| \frac{4a - 3b - 2}{\sqrt{3^2 + \left( - 4 \right)^2}} \right| = \left| \frac{4a - 3 \times \frac{5 - 2a}{11} - 2}{5} \right|\]

\[ \Rightarrow d_2 = \left| \frac{44a - 15 + 6a - 22}{11 \times 5} \right| \left[ \text { from } (1) \right]\]

\[ \Rightarrow d_2 = \left| \frac{50a - 37}{55} \right|\]

∴ d1 = d2

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.15 [Page 108]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.15 | Q 4 | Page 108

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×