English

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2). - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).

Sum

Solution

12(x + 6) = 5(y – 2)

or 12x + 72 = 5y – 10

12x – 5y + 82 = 0

Distance of point  (x1, y1) from the line ax + by + c = 0 `(("ax"_1 + "by"_1 + "c"))/sqrt("a"^2 + "b"^2)`

∴ Distance from point (−1, 1) to line 12x − 5y + 8 = 0

d = `(|12 xx (-1) - 5 xx 1 + 8|)/sqrt(12^2 + 5^2)`

= `|(12 - 5 + 82)/(sqrt(144 + 25))|`

= `65/13`

= 5 Units

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.3 [Page 227]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.3 | Q 4 | Page 227

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×