English

The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______. - Mathematics

Advertisements
Advertisements

Question

The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.

Options

  • 13

  • `7/13 sqrt(13)`

  • `sqrt(13)`

  • None of these

MCQ
Fill in the Blanks

Solution

The distance of the point P(1, – 3) from the line 2y – 3x = 4 is 13.

Explanation:

The distance of the point P (1, – 3) from the line 2y – 3 x – 4 = 0 is the length of perpendicular from the point to the line which is given by

`|(2(-3) - 3 - 4)/sqrt(13)| = sqrt(13)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Solved Examples [Page 175]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Solved Examples | Q 15 | Page 175

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×