Advertisements
Advertisements
Question
Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).
Solution
The equation of the line joining the points (cosθ, sinθ) and (cos∅, sin∅) is given by
= `y - sin θ = (sin∅ - sinθ)/(cos∅ - cosθ) (x - cosθ)`
= y(cos∅ - cosθ)-sinθ(cos∅ - cosθ) = x(sin∅ - sinθ)-cosθ (sin∅ - sinθ)
= x(sinθ - sin∅)+y(cos∅ - cosθ) + cosθ sin∅ - cosθ sinθ - sinθ cos∅ + sinθ cosθ = 0
= x(sinθ - sin∅)+y(cos∅ - cosθ) + sin (∅ - θ) = 0
= Ax + By + C = 0, where A = sin θ - sin∅, B = cos∅ - cosθ, and C = sin (∅ - θ)
It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by
`d = |Ax_1 + By_1 + C|/sqrt(A^2 + B^2)`
Therefore, perpendicular distance (d) of the given line from the point (x1, y1) = (0, 0) is
`d = |(sinθ - sin∅)(0) + (cos∅ - cosθ)(0) + sin(∅ - θ)|/sqrt((sinθ - sin∅)^2 + (cos∅ - cosθ)^2`
= `|sin (∅ - θ)|/sqrt (sin^2θ + sin^2∅ - 2sinθ sin∅ + cos^2∅ + cos^2θ - 2cos∅ cosθ)`
= `|sin (∅ - θ)|/sqrt ((sin^2θ + cos^2θ) - (sin^2∅ cos^2∅) -2(sinθ - sin∅ + cosθ cos∅)`
= `|sin (∅ - θ)|/sqrt(1 + 1 - 2(cos (∅ - θ)))`
= `|sin (∅ - θ)|/sqrt(2(1 - cos (∅ - θ))`
= `|sin (∅ - θ)|/sqrt(2(2sin^2 ((∅ - θ)/2))`
= `|sin (∅ - θ)|/(|2sin((∅ - θ)/2)|)`
APPEARS IN
RELATED QUESTIONS
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.
Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\] from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]
Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.