Advertisements
Advertisements
प्रश्न
Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).
उत्तर
The equation of the line joining the points (cosθ, sinθ) and (cos∅, sin∅) is given by
= `y - sin θ = (sin∅ - sinθ)/(cos∅ - cosθ) (x - cosθ)`
= y(cos∅ - cosθ)-sinθ(cos∅ - cosθ) = x(sin∅ - sinθ)-cosθ (sin∅ - sinθ)
= x(sinθ - sin∅)+y(cos∅ - cosθ) + cosθ sin∅ - cosθ sinθ - sinθ cos∅ + sinθ cosθ = 0
= x(sinθ - sin∅)+y(cos∅ - cosθ) + sin (∅ - θ) = 0
= Ax + By + C = 0, where A = sin θ - sin∅, B = cos∅ - cosθ, and C = sin (∅ - θ)
It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by
`d = |Ax_1 + By_1 + C|/sqrt(A^2 + B^2)`
Therefore, perpendicular distance (d) of the given line from the point (x1, y1) = (0, 0) is
`d = |(sinθ - sin∅)(0) + (cos∅ - cosθ)(0) + sin(∅ - θ)|/sqrt((sinθ - sin∅)^2 + (cos∅ - cosθ)^2`
= `|sin (∅ - θ)|/sqrt (sin^2θ + sin^2∅ - 2sinθ sin∅ + cos^2∅ + cos^2θ - 2cos∅ cosθ)`
= `|sin (∅ - θ)|/sqrt ((sin^2θ + cos^2θ) - (sin^2∅ cos^2∅) -2(sinθ - sin∅ + cosθ cos∅)`
= `|sin (∅ - θ)|/sqrt(1 + 1 - 2(cos (∅ - θ)))`
= `|sin (∅ - θ)|/sqrt(2(1 - cos (∅ - θ))`
= `|sin (∅ - θ)|/sqrt(2(2sin^2 ((∅ - θ)/2))`
= `|sin (∅ - θ)|/(|2sin((∅ - θ)/2)|)`
APPEARS IN
संबंधित प्रश्न
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines:
15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.
Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .
Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\] from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
Determine the distance between the pair of parallel lines:
4x − 3y − 9 = 0 and 4x − 3y − 24 = 0
Find the ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.
The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\] is
The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.