मराठी

Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0

बेरीज

उत्तर

It is known that the distance (d) between parallel lines Ax + By + C1 = 0 and Ax + By + C2 = 0 is

given by d = `(|C_1 - C_2|)/sqrt(A^2 + B^2)`

The given parallel lines are l (x + y) + p = 0 and l (x + y) – r = 0.

lx + ly + p = 0 and lx + ly – r = 0

Here, A = l, B = l, C1 = p, and C= –r.

Therefore, the distance between the parallel lines is

`d = (|C_1 - C_2|)/sqrt(A^2 + B^2)` = `(|p + r|)/sqrt(l^2 + l^2)` units

= `(|p + r|)/sqrt(2l^2)` units

=  `(|p + r|)/(lsqrt2)` units

=  `1/sqrt2|(p + r)/(l)|` units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise 10.3 [पृष्ठ २२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise 10.3 | Q 6.2 | पृष्ठ २२७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×