मराठी

The Value of λ for Which the Lines 3x + 4y = 5, 5x + 4y = 4 and λX + 4y = 6 Meet at a Point is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is

पर्याय

  • 2

  • 1

  • 4

  • 3

  • 0

MCQ

उत्तर

1

It is given that the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point.
In other words, the given lines are concurrent.

\[\begin{vmatrix}3 & 4 & - 5 \\ 5 & 4 & - 4 \\ \lambda & 4 & - 6\end{vmatrix} = 0\]

\[ \Rightarrow 3\left( - 24 + 16 \right) - 4\left( - 30 + 4\lambda \right) - 5\left( 20 - 4\lambda \right) = 0\]

\[ \Rightarrow - 24 + 120 - 16\lambda - 100 + 20\lambda = 0\]

\[ \Rightarrow 4\lambda = 4\]

\[ \Rightarrow \lambda = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.21 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.21 | Q 25 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×