Advertisements
Advertisements
प्रश्न
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
उत्तर
Here,
\[\left( x_1 , y_1 \right) = A \left( 3, 5 \right)\]
It is given that the required line is parallel to x − 2y = 1
\[\Rightarrow 2y = x - 1\]
\[ \Rightarrow y = \frac{1}{2}x - \frac{1}{2}\]
\[\therefore tan\theta = \frac{1}{2} \Rightarrow sin\theta = \frac{1}{\sqrt{5}}, cos\theta = \frac{2}{\sqrt{5}}\]
So, the equation of the line is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]
\[ \Rightarrow \frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}}\]
\[ \Rightarrow x - 3 = 2y - 10\]
\[ \Rightarrow x - 2y + 7 = 0\]
Let line \[x - 2y + 7 = 0\] cut line 2x + 3y = 14 at P.
Let AP = r
Then, the coordinates of P are given by \[\frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}} = r\] \[\Rightarrow x = 3 + \frac{2r}{\sqrt{5}}, y = 5 + \frac{r}{\sqrt{5}}\]
Thus, the coordinates of P are \[\left( 3 + \frac{2r}{\sqrt{5}}, 5 + \frac{r}{\sqrt{5}} \right)\].
Clearly, P lies on the line 2x + 3y = 14.
\[\therefore 2\left( 3 + \frac{2r}{\sqrt{5}} \right) + 3\left( 5 + \frac{r}{\sqrt{5}} \right) = 14\]
\[ \Rightarrow 7 + \frac{7r}{\sqrt{5}} = 0\]
\[ \Rightarrow r = - \sqrt{5}\]
∴ AP = \[\left| r \right|\] = \[\sqrt{5}\]
APPEARS IN
संबंधित प्रश्न
If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1` are 4 units.
Find the distance between parallel lines l (x + y) + p = 0 and l (x + y) – r = 0
What are the points on the y-axis whose distance from the line `x/3 + y/4 = 1` is 4 units.
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.
If sum of perpendicular distances of a variable point P (x, y) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.
If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .
Determine the distance between the pair of parallel lines:
4x − 3y − 9 = 0 and 4x − 3y − 24 = 0
Determine the distance between the pair of parallel lines:
8x + 15y − 34 = 0 and 8x + 15y + 31 = 0
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
Find the equation of two straight lines which are parallel to x + 7y + 2 = 0 and at unit distance from the point (1, −1).
Answer 3:
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.