मराठी

Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.

बेरीज

उत्तर

Let (x1, y1) be any point lying in the equation x + y = 4

∴ x1 + y1 = 4  ....(i)

Distance of the point (x1, y1) from the equation 4x + 3y = 10

`(4x_1 + 3y_1 - 10)/sqrt((4)^2 + (3)^2)` = 1

`|(4x_1 + 3y_1 - 10)/5|` = 1

4x1 + 3y1 – 10 = ± 5

Taking (+) sign 4x1 + 3y1 – 10 = 5

⇒ 4x1 + 3y1 = 15  ......(ii)

From equation (i) we get y1 = 4 – x1

Putting the value of y1 in equation (ii) we get

4x1 + 3(4 – x1) = 15

⇒ 4x1 + 12 – 3x1 = 15

⇒ x1 + 12 = 15

⇒ x1 = 3 and y1 = 4 – 3 = 1

So, the required point is (3, 1)

Now taking (–) sign, we have

4x1 + 3y1 – 10 = – 5

⇒ 4x1 + 3y1 = 5   .....(iii)

From equation (i) we get y1 = 4 – x1

⇒ 4x1 + 3(4 – x1) = 5

⇒ 4x1 + 12 – 3x1 = 5

⇒ x1 = 5 – 12 = – 7

and y1 = 4 – (– 7) = 11

So, the required point is (– 7, 11)

Hence, the required points on the given line are (3, 1) and (–7, 11).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 5 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×