मराठी

A Line a Drawn Through a (4, −1) Parallel to the Line 3x − 4y + 1 = 0. Find the Coordinates of the Two Points on this Line Which Are at a Distance of 5 Units from A. - Mathematics

Advertisements
Advertisements

प्रश्न

A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.

थोडक्यात उत्तर

उत्तर

The slope of the line 3x − 4y + 1 = 0 or  \[y = \frac{3}{4}x - \frac{1}{4}\] is \[\frac{3}{4}\]

So, the slope of the required line is also \[\frac{3}{4}\] as it is parallel to the given line. 

\[\therefore \tan\theta = \frac{3}{4} \Rightarrow sin\theta = \frac{3}{5} \text { and } cos\theta = \frac{4}{5}\]

Here,

\[\left( x_1 , y_1 \right) = A \left( 4, - 1 \right)\]

So, the equation of the line passing through A (4, −1) and having slope \[\frac{3}{4}\] is  

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x - 4}{\frac{4}{5}} = \frac{y + 1}{\frac{3}{5}}\]

\[ \Rightarrow 3x - 12 = 4y + 4\]

\[ \Rightarrow 3x - 4y - 16 = 0\]

Here,AP = r = 5
Thus, the coordinates of P are given by

\[x = x_1 \pm r\text { cos } \theta, y = y_1 \pm r\text { sin }\theta\]

\[ \Rightarrow x = 4 \pm 5\left( \frac{4}{5} \right), y = - 1 \pm 5\left( \frac{3}{5} \right)\]

\[\Rightarrow x = 4 \pm 4, y = - 1 \pm 3\]

\[ \Rightarrow x = 8, y = 2 \text { and } x = 0, y = - 4\]

Hence, the coordinates of the two points at a distance of 5 units from A are (8, 2) and (0, −4).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.8 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.8 | Q 4 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×