मराठी

Find the Distance of the Line 2x + Y = 3 from the Point (−1, −3) in the Direction of the Line Whose Slope is 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.

थोडक्यात उत्तर

उत्तर

Here, 

\[\left( x_1 , y_1 \right) = A\left( - 1, - 3 \right)\] and \[tan\theta = 1 \Rightarrow sin\theta = \frac{1}{\sqrt{2}}, cos\theta = \frac{1}{\sqrt{2}}\]

So, the equation of the line is

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x + 1}{\frac{1}{\sqrt{2}}} = \frac{y + 3}{\frac{1}{\sqrt{2}}}\]

\[ \Rightarrow x + 1 = y + 3\]

\[ \Rightarrow x - y - 2 = 0\]

Let line

\[x - y - 2 = 0\] cut line 2x + y = 3 at P.

Let AP = r
Then, the coordinates of P are given by \[\frac{x + 1}{cos\theta} = \frac{y + 3}{sin\theta} = r\]

\[\Rightarrow x = - 1 + rcos\theta, y = - 3 + rsin\theta\]

\[\Rightarrow x = - 1 + \frac{r}{\sqrt{2}}, y = - 3 + \frac{r}{\sqrt{2}}\]

Thus, the coordinates of P are \[\left( - 1 + \frac{r}{\sqrt{2}}, - 3 + \frac{r}{\sqrt{2}} \right)\]

Clearly, P lies on the line 2x + y = 3.

\[\therefore 2\left( - 1 + \frac{r}{\sqrt{2}} \right) - 3 + \frac{r}{\sqrt{2}} = 3\]

\[ \Rightarrow - 2 - \sqrt{2}r - 3 + \frac{r}{\sqrt{2}} = 3\]

\[ \Rightarrow \frac{3r}{\sqrt{2}} = 8\]

\[ \Rightarrow r = \frac{8\sqrt{2}}{3}\]

∴ AP = \[\frac{8\sqrt{2}}{3}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.8 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.8 | Q 11 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×