मराठी

Find the Equation of the Line Whose Perpendicular Distance from the Origin is 4 Units and the Angle Which the Normal Makes with the Positive Direction of X-axis is 15°. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.

थोडक्यात उत्तर

उत्तर

Here, p = 4,

\[\alpha = {15}^\circ\]

\[\text { Now ,} \cos {15}^\circ = \cos\left( {45}^\circ - {30}^\circ \right) = \cos {45}^\circ \cos {30}^\circ + \sin {45}^\circ \sin {30}^\circ \]

\[ \Rightarrow \cos {15}^\circ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}\]

\[\text {And,} \sin {15}^\circ = \sin\left( {45}^\circ - {30}^\circ \right) = \sin {45}^\circ \cos {30}^\circ - \cos {45}^\circ \sin {30}^\circ \]

\[ \Rightarrow \sin {15}^\circ = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}\]

So, the equation of the line in normal form is

\[xcos\alpha + ysin\alpha = p\]

\[ \Rightarrow \frac{\left( \sqrt{3} + 1 \right)x}{2\sqrt{2}} + \frac{\left( \sqrt{3} - 1 \right)y}{2\sqrt{2}} = 4\]

\[ \Rightarrow \left( \sqrt{3} + 1 \right)x + \left( \sqrt{3} - 1 \right)y = 8\sqrt{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.7 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.7 | Q 3 | पृष्ठ ५३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.


Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×