मराठी

Area of the Triangle Formed by the Points ( ( a + 3 ) ( a + 4 ) , a + 3 ) , ( ( a + 2 ) ( a + 3 ) , ( a + 2 ) ) and ( ( a + 1 ) ( a + 2 ) , ( a + 1 ) ) - Mathematics

Advertisements
Advertisements

प्रश्न

Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]

पर्याय

  • 25a2

  •  5a2

  • 24a2

  • none of these

MCQ

उत्तर

none of these

The given points are \[(\left\{ a + 3)(a + 4), \left( a + 3 \right) \right\}, \left\{ (a + 2)(a + 3), (a + 2) \right\} \text { and } \left\{ (a + 1)(a + 2), (a + 1) \right\}\].

Let A be the area of the triangle formed by these points.

\[\text { Then, } A = \frac{1}{2}\left[ x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ \left( a + 3 \right)\left( a + 4 \right)\left( a + 2 - a - 1 \right) + \left( a + 2 \right)\left( a + 3 \right)\left( a + 1 - a - 3 \right) + \left( a + 1 \right)\left( a + 2 \right)\left( a + 3 - a - 2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ \left( a + 3 \right)\left( a + 4 \right) - 2\left( a + 2 \right)\left( a + 3 \right) + \left( a + 1 \right)\left( a + 2 \right) \right]\]

\[ \Rightarrow A = \frac{1}{2}\left[ a^2 + 7a + 12 - 2 a^2 - 10a - 12 + a^2 + 3a + 2 \right]\]

\[ \Rightarrow A = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.21 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.21 | Q 11 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×