English

Area of the Triangle Formed by the Points ( ( a + 3 ) ( a + 4 ) , a + 3 ) , ( ( a + 2 ) ( a + 3 ) , ( a + 2 ) ) and ( ( a + 1 ) ( a + 2 ) , ( a + 1 ) ) - Mathematics

Advertisements
Advertisements

Question

Area of the triangle formed by the points ((a+3)(a+4),a+3),((a+2)(a+3),(a+2)) and ((a+1)(a+2),(a+1))

Options

  • 25a2

  •  5a2

  • 24a2

  • none of these

MCQ

Solution

none of these

The given points are ({a+3)(a+4),(a+3)},{(a+2)(a+3),(a+2)} and {(a+1)(a+2),(a+1)}.

Let A be the area of the triangle formed by these points.

 Then, A=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]

A=12[(a+3)(a+4)(a+2a1)+(a+2)(a+3)(a+1a3)+(a+1)(a+2)(a+3a2)]

A=12[(a+3)(a+4)2(a+2)(a+3)+(a+1)(a+2)]

A=12[a2+7a+122a210a12+a2+3a+2]

A=1

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 11 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the lines x-12=y+13=z-14 and x-31=y-k2=z1 intersect each other then find value of k


Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


What are the points on the y-axis whose distance from the line  x3+y4=1 is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 (512) with the positive direction of x-axi .


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the equation of a line perpendicular to the line 3xy+5=0 and at a distance of 3 units from the origin.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


What are the points on X-axis whose perpendicular distance from the straight line xa+yb=1 is a ?


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line x3y+4=0.


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Write the value of θ ϵ (0,π2) for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


The shortest distance between the lines

r¯=(i^+2j^+k^)+λ(i^-j^+k^) and

r¯=(2i^-j^-k^)+μ(2i^+j^+2k^) is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = -34
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = -13
(c) Passes through (1, 2) is (iii) λ = -1741
(d) Parallel to x axis is λ = 3

A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.