English

Find the Distance of the Point (3, 5) from the Line 2x + 3y = 14 Measured Parallel to the Line X − 2y = 1. - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.

Answer in Brief

Solution

Here,

(x1,y1)=A(3,5) 

It is given that the required line is parallel to x − 2y = 1

2y=x1

y=12x12

tanθ=12sinθ=15,cosθ=25

So, the equation of the line is

xx1cosθ=yy1sinθ

x325=y515

x3=2y10

x2y+7=0

Let line x2y+7=0 cut line 2x + 3y = 14 at P.

Let AP = r
Then, the coordinates of P are given by x325=y515=r x=3+2r5,y=5+r5

Thus, the coordinates of P are (3+2r5,5+r5).

Clearly, P lies on the line 2x + 3y = 14.

2(3+2r5)+3(5+r5)=14

7+7r5=0

r=5

∴ AP =  |r| = 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.8 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.8 | Q 9 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line xa+yb=1 is a ?


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that 1c+1a1b=c2ab .

 


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and (3+32,3+32)  is


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is 1x2+1y2=4p2 where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line r¯=(7i^+7j^+6k^)+λ(-2i^+2j^+3k^)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.