English

Find the Equations of the Lines Through the Point of Intersection of the Lines X − Y + 1 = 0 and 2x − 3y + 5 = 0, Whose Distance from the Point(3, 2) is 7/5. - Mathematics

Advertisements
Advertisements

Question

Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.

Answer in Brief

Solution

The equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y + 5 = 0 is given by
x − y + 1 + a(2x − 3y + 5) = 0
⇒ (1 + 2a)x  + y(−3a − 1) + 5a + 1 = 0                          .....(1)
The distance of the above line from the point is given by \[\frac{3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}}\]

\[\therefore \frac{\left| 3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1 \right|}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}} = \frac{7}{5}\]

\[ \Rightarrow \frac{\left| 5a + 2 \right|}{\sqrt{13 a^2 + 10a + 2}} = \frac{7}{5}\]

\[ \Rightarrow 25 \left( 5a + 2 \right)^2 = 49\left( 13 a^2 + 10a + 2 \right)\]

\[ \Rightarrow 6 a^2 - 5a - 1 = 0\]

\[ \Rightarrow a = 1, - \frac{1}{6}\]

Substituting the value of a in (1),  we get
3x − 4y + 6 = 0 and 4x − 3y + 1 = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.19 [Page 131]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.19 | Q 11 | Page 131

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×