हिंदी

Find the Equations of the Lines Through the Point of Intersection of the Lines X − Y + 1 = 0 and 2x − 3y + 5 = 0, Whose Distance from the Point(3, 2) is 7/5. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.

संक्षेप में उत्तर

उत्तर

The equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y + 5 = 0 is given by
x − y + 1 + a(2x − 3y + 5) = 0
⇒ (1 + 2a)x  + y(−3a − 1) + 5a + 1 = 0                          .....(1)
The distance of the above line from the point is given by \[\frac{3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}}\]

\[\therefore \frac{\left| 3\left( 2a + 1 \right) + 2\left( - 3a - 1 \right) + 5a + 1 \right|}{\sqrt{\left( 2a + 1 \right)^2 + \left( - 3a - 1 \right)^2}} = \frac{7}{5}\]

\[ \Rightarrow \frac{\left| 5a + 2 \right|}{\sqrt{13 a^2 + 10a + 2}} = \frac{7}{5}\]

\[ \Rightarrow 25 \left( 5a + 2 \right)^2 = 49\left( 13 a^2 + 10a + 2 \right)\]

\[ \Rightarrow 6 a^2 - 5a - 1 = 0\]

\[ \Rightarrow a = 1, - \frac{1}{6}\]

Substituting the value of a in (1),  we get
3x − 4y + 6 = 0 and 4x − 3y + 1 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.19 [पृष्ठ १३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.19 | Q 11 | पृष्ठ १३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×