हिंदी

Write the Distance Between the Lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.

संक्षेप में उत्तर

उत्तर

The distance between the two parallel lines  \[ax + by + c_1 = 0 \text { and } ax + by + c_2 = 0\] is 

\[\left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|\].

The given lines can be written as
4x + 3y − 11 = 0              ... (1)

\[8x + 6y - 15 = 0 \Rightarrow 4x + 3y - \frac{15}{2} = 0\]       ... (2)

Let d be the distance between the lines (1) and (2).

\[d = \left| \frac{- 11 - \left( - \frac{15}{2} \right)}{\sqrt{4^2 + 3^2}} \right| = \frac{7}{10}\] units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.20 [पृष्ठ १३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.20 | Q 5 | पृष्ठ १३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×