हिंदी

Write the Value of θ ϵ ( 0 , π 2 ) for Which Area of the Triangle Formed by Points O (0, 0), a (A Cos θ, B Sin θ) and B (A Cos θ, − B Sin θ) is Maximum. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.

संक्षेप में उत्तर

उत्तर

Let A be the area of the triangle formed by the points O (0,0), A (acosθ,bsinθ) and B (acosθ,− bsinθ)

\[A = \frac{1}{2}\begin{vmatrix}0 & 0 & 1 \\ acos\theta & bsin\theta & 1 \\ acos\theta & - bsin\theta & 1\end{vmatrix}\]

\[ \Rightarrow A = \frac{1}{2}\left| \left( - absin\theta cos\theta - absin\theta cos\theta \right) \right|\]

\[ \Rightarrow A = absin\theta cos\theta = \frac{1}{2}\sin2\theta\]

Now,

\[\therefore A_{\text { max }} = \frac{1}{2}, \text { when  }\sin2\theta = 1\]

\[ \Rightarrow \therefore A_{\text { max }} = \frac{1}{2},\text {  when } 2\theta = \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{4}\]

Hence, the area of the triangle formed by the given points is maximum when \[\theta = \frac{\pi}{4}\].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.20 [पृष्ठ १३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.20 | Q 4 | पृष्ठ १३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×