हिंदी

Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is 1x2+1y2=4p2 where p is a constant. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.

योग

उत्तर

Changing the given equation of the line into intercept form

We have `x/(p/(cos alpha)) + y/(p/(sin alpha))` = 1

Which gives the coordinates `p/(cos alpha), 0` and 0, `p/(sin alpha)`

Where the line intersects x-axis and y-axis, respectively.

Let (h, k) denote the mid-point of the line segment joining the points

`p/(cos alpha), 0` and 0, `p/(sin alpha)`

Then h = `p/(2cosalpha)` and k = `p/(2sinalpha)` (Why?)

This gives `cos alpha = p/(2"h")` and `sin alpha = p/(2k)`

Squaring and adding we get

`p^2/(4h^2) + p^2/(4k^2)`

or `1/h^2 + 1/k^2 = 4/p^2`.

Therefore, the required locus is `1/x^2 + 1/y^2 = 4/p^2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Solved Examples [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Solved Examples | Q 6 | पृष्ठ १६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The distance between the lines y = mx + c1 and y = mx + c2 is ______.


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×