हिंदी

Find the Distance of the Point (2, 5) from the Line 3x + Y + 4 = 0 Measured Parallel to the Line 3x − 4y + 8 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.

संक्षेप में उत्तर

उत्तर

Here,

 \[\left( x_1 , y_1 \right) = A\left( 2, 5 \right)\]

It is given that the required line is parallel to 3x −4y + 8 = 0

\[\Rightarrow 4y = 3x + 8\]

\[ \Rightarrow y = \frac{3}{4}x + 2\]

\[\therefore tan\theta = \frac{3}{4} \Rightarrow sin\theta = \frac{3}{5}, cos\theta = \frac{4}{5}\]

So, the equation of the line is

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x - 2}{\frac{4}{5}} = \frac{y - 5}{\frac{3}{5}}\]

\[ \Rightarrow 3x - 6 = 4y - 20\]

\[ \Rightarrow 3x - 4y + 14 = 0\]

Let the line \[3x - 4y + 14 = 0\] cut the line 3x + y + 4 = 0 at P.

Let AP = r
Then, the coordinates of P are given by \[\frac{x - 2}{\frac{4}{5}} = \frac{y - 5}{\frac{3}{5}} = r\] \[\Rightarrow x = 2 + \frac{4r}{5}, y = 5 + \frac{3r}{5}\]

Thus, the coordinates of P are \[\left( 2 + \frac{4r}{5}, 5 + \frac{3r}{5} \right)\].

Clearly, P lies on the line 3x + y + 4 = 0.

\[\therefore 3\left( 2 + \frac{4r}{5} \right) + 5 + \frac{3r}{5} + 4 = 0\]

\[ \Rightarrow 6 + \frac{12r}{5} + 5 + \frac{3r}{5} + 4 = 0\]

\[ \Rightarrow 15 + \frac{15r}{5} = 0\]

\[ \Rightarrow r = - 5\]

∴ AP = \[\left| r \right|\] = 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.8 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.8 | Q 10 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×