हिंदी

The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.

विकल्प

  • `130/(17sqrt(29))`

  • `13/(7sqrt(29))`

  • `130/7`

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is `130/(17sqrt(29))`.

Explanation:

Given equations are: 2x – 3y + 5 = 0  .....(i)

3x + 4y = 0   ......(ii)

From equation (ii) we get,

4y = – 3x

⇒ y = `(-3)/4 x`  .....(iii)

Putting the value of y in eq. (i) we have

`2x - 3((-3)/4 x) + 5` = 0

⇒ 8x + 9x + 20 = 0

⇒ 17x + 20 = 0

⇒ x = `(-20)/17`

Putting the value of x in equation (iii) we get

y = ` (-3)/4((-20)/17)`

⇒ y = `15/17`

∴ Point of intersection is `(- 20/17, 15/17)`.

Now perpendicular distance from the point `(- 20/17, 15/17)` to the given line 5x – 2y = 0 is

`|(5(- 20/17) - 2(15/17))/sqrt(25 + 4)| = |((-100)17 - 30/17)/sqrt(29)|`

= `130/(17sqrt(29))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Straight Lines - Exercise [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 10 Straight Lines
Exercise | Q 28 | पृष्ठ १८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line 2x – y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


The distance between the orthocentre and circumcentre of the triangle with vertices (1, 2), (2, 1) and \[\left( \frac{3 + \sqrt{3}}{2}, \frac{3 + \sqrt{3}}{2} \right)\]  is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×