Advertisements
Advertisements
प्रश्न
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
उत्तर
Here,
\[\left( x_1 , y_1 \right) = A \left( 1, 2 \right), \theta = {60}^\circ\]
So, the equation of the line is
\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta} = r\]
\[ \Rightarrow \frac{x - 1}{\cos {60}^\circ} = \frac{y - 2}{\sin {60}^\circ} = r\]
\[ \Rightarrow \frac{x - 1}{\frac{1}{2}} = \frac{y - 2}{\frac{\sqrt{3}}{2}} = r\]
\[\text { Here, r represents the distance of any point on this line from point } A (1, 2) . \]
\[\text { The coordinates of any point P on this line are } \left( 1 + \frac{r}{2}, 2 + \frac{\sqrt{3}r}{2} \right) . \]
Clearly, P lies on the line x + y = 6
\[\therefore 1 + \frac{r}{2} + 2 + \frac{\sqrt{3}r}{2} = 6\]
\[ \Rightarrow \frac{\sqrt{3}r}{2} + \frac{r}{2} = 3\]
\[ \Rightarrow r\left( \sqrt{3} + 1 \right) = 6\]
\[ \Rightarrow r = \frac{6}{\sqrt{3} + 1} = 3\left( \sqrt{3} - 1 \right)\]
∴ AP = \[3\left( \sqrt{3} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
What are the points on the y-axis whose distance from the line `x/3 + y/4 = 1` is 4 units.
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.
Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.
Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.
Determine the distance between the pair of parallel lines:
4x − 3y − 9 = 0 and 4x − 3y − 24 = 0
Determine the distance between the pair of parallel lines:
y = mx + c and y = mx + d
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.
Find the ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0
Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.
L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through
Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is
The shortest distance between the lines
`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and
`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is
If the tangent to the curve y = 3x2 - 2x + 1 at a point Pis parallel toy = 4x + 3, the co-ordinates of P are
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.