English

Show that the Product of Perpendiculars on the Line X a Cos θ + Y B Sin θ = 1 from the Points ( ± √ a 2 − B 2 , 0 ) is B 2 . - Mathematics

Advertisements
Advertisements

Question

Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]

Answer in Brief

Solution

Let 

\[d_1 \text { and } d_2\] be the perpendicular distances of line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from points \[\left( \sqrt{a^2 - b^2}, 0 \right) \text { and } \left( - \sqrt{a^2 - b^2}, 0 \right)\] ,respectively.

\[\therefore d_1 = \left| \frac{\frac{\sqrt{a^2 - b^2}}{a}cos\theta - 1}{\sqrt{\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}}} \right| = b \left| \frac{\sqrt{a^2 - b^2}cos\theta - a}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \right|\]

Similarly,

\[d_1 = \left| \frac{- \frac{\sqrt{a^2 - b^2}}{a}cos\theta - 1}{\sqrt{\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}}} \right| = b \left| \frac{- \sqrt{a^2 - b^2}cos\theta - a}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \right| = b \left| \frac{\sqrt{a^2 - b^2}cos\theta + a}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \right|\]

Now,

\[d_1 d_2 = b \left| \frac{\sqrt{a^2 - b^2}cos\theta - a}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \right| \times b \left| \frac{\sqrt{a^2 - b^2}cos\theta + a}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \right|\]

\[ \Rightarrow d_1 d_2 = b^2 \left| \frac{\left( a^2 - b^2 \right) \cos^2 \theta - a^2}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right|\]

\[ \Rightarrow d_1 d_2 = b^2 \left| \frac{a^2 \left( \cos^2 \theta - 1 \right) {- b}^2 \cos^2 \theta}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right|\]

\[ \Rightarrow d_1 d_2 = b^2 \left| \frac{- a^2 \sin^2 \theta {- b}^2 \cos^2 \theta}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right| = b^2 \left| \frac{a^2 \sin^2 \theta {+ b}^2 \cos^2 \theta}{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \right| = b^2\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.15 [Page 108]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.15 | Q 8 | Page 108

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


A line a drawn through A (4, −1) parallel to the line 3x − 4y + 1 = 0. Find the coordinates of the two points on this line which are at a distance of 5 units from A.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


If the length of the perpendicular from the point (1, 1) to the line ax − by + c = 0 be unity, show that \[\frac{1}{c} + \frac{1}{a} - \frac{1}{b} = \frac{c}{2ab}\] .

 


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


Find the equation of two straight lines which are parallel to + 7y + 2 = 0 and at unit distance from the point (1, −1).

Answer 3:


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are

Column C1 Column C2
(a) Parallel to y-axis is (i) λ = `-3/4`
(b) Perpendicular to 7x + y – 4 = 0 is (ii) λ = `-1/3`
(c) Passes through (1, 2) is (iii) λ = `-17/41`
(d) Parallel to x axis is λ = 3

Find the length of the perpendicular drawn from the point P(3, 2, 1) to the line `overliner = (7hati + 7hatj + 6hatk) + λ(-2hati + 2hatj + 3hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×