English

Write the Locus of a Point the Sum of Whose Distances from the Coordinates Axes is Unity. - Mathematics

Advertisements
Advertisements

Question

Write the locus of a point the sum of whose distances from the coordinates axes is unity.

Answer in Brief

Solution

Let (h, k) be the locus.
It is given that the sum of distances of (h, k) from the coordinate axis is unity.

\[\therefore\] |h| + |k| = 1

Taking locus of (h, k), we get:
|x| + |y| = 1
This represents a square.

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.20 [Page 132]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.20 | Q 15 | Page 132

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.


Find the equation of the straight line at a distance of 3 units from the origin such that the perpendicular from the origin to the line makes an angle tan−1 \[\left( \frac{5}{12} \right)\] with the positive direction of x-axi .


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.


Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Show that the perpendiculars let fall from any point on the straight line 2x + 11y − 5 = 0 upon the two straight lines 24x + 7y = 20 and 4x − 3y − 2 = 0 are equal to each other.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Show that the product of perpendiculars on the line \[\frac{x}{a} \cos \theta + \frac{y}{b} \sin \theta = 1\]  from the points \[( \pm \sqrt{a^2 - b^2}, 0) \text { is }b^2 .\]


Show that the path of a moving point such that its distances from two lines 3x − 2y = 5 and 3x + 2y = 5 are equal is a straight line.


Determine the distance between the pair of parallel lines:

8x + 15y − 34 = 0 and 8x + 15y + 31 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


L is a variable line such that the algebraic sum of the distances of the points (1, 1), (2, 0) and (0, 2) from the line is equal to zero. The line L will always pass through


Area of the triangle formed by the points \[\left( (a + 3)(a + 4), a + 3 \right), \left( (a + 2)(a + 3), (a + 2) \right) \text { and } \left( (a + 1)(a + 2), (a + 1) \right)\]


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×