English

Find the Distance of the Point (3, 5) from the Line 2x + 3y = 14 Measured Parallel to a Line Having Slope 1/2. - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to a line having slope 1/2.

Answer in Brief

Solution

\[\text { Here, } \left( x_1 , y_1 \right) = A\left( 3, 5 \right), \tan\theta = \frac{1}{2}\]

\[ \Rightarrow sin\theta = \frac{1}{\sqrt{1^2 + 2^2}} \text { and  }cos\theta = \frac{2}{\sqrt{1^2 + 2^2}}\]

\[ \Rightarrow sin\theta = \frac{1}{\sqrt{5}}\text {  and } cos\theta = \frac{2}{\sqrt{5}}\]

So, the equation of the line passing through (3, 5) and having slope  \[\frac{1}{2}\] is

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}}\]

\[ \Rightarrow x - 2y + 7 = 0\]

Let x − 2y + 7 = 0 intersect the line 2x + 3y = 14 at point P.
Let AP = r
Then, the coordinates of P are given by \[\frac{x - 3}{\frac{2}{\sqrt{5}}} = \frac{y - 5}{\frac{1}{\sqrt{5}}} = r\]
\[\Rightarrow x = 3 + \frac{2r}{\sqrt{5}} \text { and }y = 5 + \frac{r}{\sqrt{5}}\]
Thus, the coordinates of P are \[\left( 3 + \frac{2r}{\sqrt{5}}, 5 + \frac{r}{\sqrt{5}} \right)\].
Clearly, P lies on the line 2x + 3y = 14.

\[\therefore 2\left( 3 + \frac{2r}{\sqrt{5}} \right) + 3\left( 5 + \frac{r}{\sqrt{5}} \right) = 14\]

\[ \Rightarrow 6 + \frac{4r}{\sqrt{5}} + 15 + \frac{3r}{\sqrt{5}} = 14\]

\[ \Rightarrow \frac{7r}{\sqrt{5}} = - 7\]

\[ \Rightarrow r = - \sqrt{5}\]

Hence, the distance of the point (3, 5) from the line 2x + 3y = 14 is \[\sqrt{5}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.8 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.8 | Q 7 | Page 66

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).


Find the points on the x-axis, whose distances from the `x/3 +y/4 = 1`  are 4 units.


Find the distance between parallel lines:

15x + 8y – 34 = 0 and 15x + 8y + 31 = 0


What are the points on the y-axis whose distance from the line  `x/3 + y/4 = 1` is 4 units.


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (3, 5) from the line 2x + 3y = 14 measured parallel to the line x − 2y = 1.


Find the distance of the line 2x + y = 3 from the point (−1, −3) in the direction of the line whose slope is 1.


Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.


Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\]  is 4 units?

 

If sum of perpendicular distances of a variable point P (xy) from the lines x + y − 5 = 0 and 3x − 2y + 7 = 0 is always 10. Show that P must move on a line.


Determine the distance between the pair of parallel lines:

4x + 3y − 11 = 0 and 8x + 6y = 15


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


If the lines x + ay + a = 0, bx + y + b = 0 and cx + cy + 1 = 0 are concurrent, then write the value of 2abc − ab − bc − ca.


Write the locus of a point the sum of whose distances from the coordinates axes is unity.


The line segment joining the points (−3, −4) and (1, −2) is divided by y-axis in the ratio


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


The line segment joining the points (1, 2) and (−2, 1) is divided by the line 3x + 4y = 7 in the ratio ______.


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is


A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


If P(α, β) be a point on the line 3x + y = 0 such that the point P and the point Q(1, 1) lie on either side of the line 3x = 4y + 8, then _______.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×