English

Find the Equation to the Straight Line Which Passes Through the Point (5, 6) and Has Intercepts on the Axes (I) Equal in Magnitude and Both Positive, - Mathematics

Advertisements
Advertisements

Question

Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.

Answer in Brief

Solution

(i) Here, a = b
So, the equation of the line is

\[\frac{x}{a} + \frac{y}{b} = 1\]

\[ \Rightarrow \frac{x}{a} + \frac{y}{a} = 1\]

\[ \Rightarrow x + y = a\]

The line x + y = a passes through (5, 6).

\[\therefore 5 + 6 = a\]

\[ \Rightarrow a = 11\]

Hence, the equation of the line is \[x + y = 11\]

(ii) Here, b = \[-\] a
So, the equation of the line is

\[\frac{x}{a} + \frac{y}{b} = 1\]

\[ \Rightarrow \frac{x}{a} + \frac{y}{- a} = 1\]

\[ \Rightarrow x - y = a\]

The line x\[-\] y = a passes through (5, 6).

\[\therefore 5 - 6 = a\]

\[ \Rightarrow a = - 1\]

Hence, the equation of the line is \[x - y = - 1\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.6 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.6 | Q 3 | Page 46

RELATED QUESTIONS

Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×