Advertisements
Advertisements
प्रश्न
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
उत्तर
Let A (1, 2) be the vertex of square ABCD and BD be one diagonal, whose equation is 4x + 7y = 12
Here, we have to find the equations of sides AB and AD, each of which makes an angle of \[{45}^\circ\] with line 4x + 7y = 12
We know the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the line whose slope is m.
Equation of the given line is
\[4x + 7y = 9\]
\[ \Rightarrow y = - \frac{4}{7}x + \frac{9}{4}\]
\[\therefore x_1 = 1, y_1 = 2, \alpha = {45}^\circ , m = - \frac{4}{7}\]
So, the equations of the required sides are
\[y - 2 = \frac{- \frac{4}{7} + \tan {45}^\circ}{1 + \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - \tan {45}^\circ}{1 - \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = \frac{- \frac{4}{7} + 1}{1 + \frac{4}{7}}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - 1}{1 - \frac{4}{7}}\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = \frac{3}{11}\left( x - 1 \right) \text { and } y - 2 = \frac{- 11}{3}\left( x - 1 \right)\]
\[ \Rightarrow 3x - 11y + 19 = 0\text { and } 11x + 3y - 17 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(a cos α, a sin α) and (a cos β, a sin β)
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (0, 1), (2, 0) and (−1, −2).
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance `sqrt(6)/3` from the given point.
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.