हिंदी

Find the Equation to the Straight Line Which Cuts off Equal Positive Intercepts on the Axes and Their Product is 25. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.

संक्षेप में उत्तर

उत्तर

The equation of the line with intercepts a and b is \[\frac{x}{a} + \frac{y}{b} = 1\].

Here, a = b and ab = 25

\[\therefore a \times a = 25\]

\[ \Rightarrow a^2 = 25\]

\[ \Rightarrow a = 5 \left( \because \text { we are to take only positive value of intercepts } \right)\]

Hence, the equation of the required line is

\[\frac{x}{5} + \frac{y}{5} = 1\] 

 \[ \Rightarrow x + y = 5\]
shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.6 | Q 5 | पृष्ठ ४७

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×