Advertisements
Advertisements
प्रश्न
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
उत्तर
The equation of the line in intercept form is \[\frac{x}{a} + \frac{y}{b} = 1\].
The line passes through (2, 1).
∴ \[\frac{2}{a} + \frac{1}{b} = 1\] ... (1)
Let the line 3x − 5y = 15 intersect the x-axis and the y-axis at A and B, respectively.
At x = 0 we have,
0 − 5y = 15
\[\Rightarrow\] y = −3
At y = 0, we have,
3x − 0 = 15
\[\Rightarrow\] x = 5
\[\therefore A \equiv \left( 0, - 3 \right) \text { and } B \equiv \left( 5, 0 \right)\]
The midpoint of AB is \[\left( \frac{5}{2}, - \frac{3}{2} \right)\].
Clearly, the point
\[\left( \frac{5}{2}, - \frac{3}{2} \right)\] lies on the line \[\frac{x}{a} + \frac{y}{b} = 1\].
∴ \[\frac{5}{2a} - \frac{3}{2b} = 1\] ... (2)
Using \[\frac{3}{2} \times eq (1) + eq (2)\] we get,
\[\frac{3}{a} + \frac{5}{2a} = \frac{3}{2} + 1\]
\[ \Rightarrow a = \frac{11}{5}\]
For a = \[\frac{11}{5}\] we have,
\[\frac{10}{11} + \frac{1}{b} = 1\]
\[ \Rightarrow b = 11\]
Hence, the equation of the required line is
\[\frac{5x}{11} + \frac{y}{11} = 1\]
\[ \Rightarrow 5x + y = 11\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line parallel to x-axis and passing through (3, −5).
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.
If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.