हिंदी

If the Diagonals of the Quadrilateral Formed by the Lines L1x + M1y + N1 = 0, L2x + M2y + N2 = 0, L1x + M1y + N1' = 0 and L2x + M2y + N2' = 0 Are Perpendicular, Then Write the Value of L12 - Mathematics

Advertisements
Advertisements

प्रश्न

If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.

संक्षेप में उत्तर

उत्तर

The given lines are
l1x + m1y + n1 = 0      ... (1)
l2x + m2y + n2 = 0      ... (2)
l1x + m1y + n1' = 0     ... (3)
l2x + m2y + n2' = 0     ... (4)
Let (1), (2), (3) and (4) represent the sides AB, BC, CD and DA, respectively.

The equation of diagonal AC passing through the intersection of (2) and (3) is given by
l1x + m1y + n1' + \[\lambda\] (l2x + m2y + n2) = 0

\[\Rightarrow \left( l_1 + \lambda l_2 \right)x + \left( m_1 + \lambda m_2 \right)y + \left( n_1 ' + \lambda n_2 \right) = 0\]

\[ \Rightarrow \text { Slope of diagonal AC } = - \left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\]

Also, the equation of diagonal BD, passing through the intersection of (1) and (2), is given by
l1x + m1y + n1 + \[\mu\] (l2x + m2y + n2) = 0

\[\Rightarrow \left( l_1 + \mu l_2 \right)x + \left( m_1 + \mu m_2 \right)y + \left( n_1 + \mu n_2 \right) = 0\]

\[ \Rightarrow \text { Slope of diagonal BD  }= - \left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right)\]

The diagonals are perpendicular to each other.
∴ \[\left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right) = - 1\]

\[\Rightarrow \left( l_1 + \lambda l_2 \right)\left( l_1 + \mu l_2 \right) = - \left( m_1 + \lambda m_2 \right)\left( m_1 + \mu m_2 \right)\]

\[\text { Let  }\lambda = - 1, \mu = 1\]

\[ \Rightarrow \left( l_1 - l_2 \right)\left( l_1 + l_2 \right) = - \left( m_1 - m_2 \right)\left( m_1 + m_2 \right)\]

\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) = - \left( {m_1}^2 - {m_2}^2 \right)\]

\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) + \left( {m_1}^2 - {m_2}^2 \right) = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.20 [पृष्ठ १३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.20 | Q 9 | पृष्ठ १३२

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance `sqrt(6)/3` from the given point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×