हिंदी

Find the Equations of the Straight Lines Passing Through (2, −1) and Making an Angle of 45° with the Line 6x + 5y − 8 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.

संक्षेप में उत्तर

उत्तर

We know that the equations of two lines passing through a point

\[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the given line y = mx + c are

\[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]

Here,

Equation of the given line is,

\[6x + 5y - 8 = 0\]

\[ \Rightarrow 5y = - 6x + 8\]

\[ \Rightarrow y = - \frac{6}{5}x + \frac{8}{5}\]

\[\text { Comparing this equation with } y = mx + c\]

we get, 

\[m = - \frac{6}{5}\] 

\[x_1 = 2, y_1 = - 1, \alpha = {45}^\circ , m = - \frac{6}{5}\]

So, the equations of the required lines are

\[y + 1 = \frac{- \frac{6}{5} + \tan {45}^\circ}{1 + \frac{6}{5}\tan {45}^\circ}\left( x - 2 \right) \text { and }y + 1 = \frac{- \frac{6}{5} - \tan {45}^\circ}{1 - \frac{6}{5}\tan {45}^\circ}\left( x - 2 \right)\]

\[ \Rightarrow y + 1 = \frac{- \frac{6}{5} + 1}{1 + \frac{6}{5}}\left( x - 2 \right) \text { and } y + 1 = \frac{- \frac{6}{5} - 1}{1 - \frac{6}{5}}\left( x - 2 \right)\]

\[ \Rightarrow y + 1 = \frac{- 1}{11}\left( x - 2 \right) \text { and } y + 1 = \frac{- 11}{- 1}\left( x - 2 \right)\]

\[ \Rightarrow x + 11y + 9 = 0\text { and } 11x - y - 23 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.18 [पृष्ठ १२४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.18 | Q 3 | पृष्ठ १२४

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×