हिंदी

Find the Equations to the Straight Lines Which Pass Through the Origin and Are Inclined at an Angle of 75° to the Straight Line X + Y + √ 3 ( Y − X ) = a . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].

संक्षेप में उत्तर

उत्तर

We know that the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the given line y = mx + c are \[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]

Here,

Equation of the given line is,

\[x + y + \sqrt{3}\left( y - x \right) = a\]

\[ \Rightarrow \left( \sqrt{3} + 1 \right)y = \left( \sqrt{3} - 1 \right)x + a\]

\[ \Rightarrow y = \frac{\left( \sqrt{3} - 1 \right)}{\left( \sqrt{3} + 1 \right)}x + \frac{a}{\left( \sqrt{3} + 1 \right)}\]

\[\text { Comparing this equation with } y = mx + c\]

we get, 

\[m = \frac{\left( \sqrt{3} - 1 \right)}{\left( \sqrt{3} + 1 \right)}\]

\[\therefore x_1 = 0, y_1 = 0, \alpha = {75}^\circ , m = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = 2 - \sqrt{3}\] and \[\tan {75}^\circ = 2 + \sqrt{3}\]

So, the equations of the required lines are

\[y - 0 = \frac{2 - \sqrt{3} + \tan {75}^\circ}{1 - \left( 2 - \sqrt{3} \right)\tan {75}^\circ}\left( x - 0 \right) \text { and  }y - 0 = \frac{2 - \sqrt{3} - \tan {75}^\circ}{1 + \left( 2 - \sqrt{3} \right)\tan {75}^\circ}\left( x - 0 \right)\]

\[ \Rightarrow y = \frac{2 - \sqrt{3} + 2 + \sqrt{3}}{1 - \left( 2 - \sqrt{3} \right)\left( 2 + \sqrt{3} \right)}x \text { and } y = \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + \left( 2 - \sqrt{3} \right)\left( 2 + \sqrt{3} \right)}x\]

\[ \Rightarrow y = \frac{4}{1 - 1}x \text { and }y = - \sqrt{3}x\]

\[ \Rightarrow x = 0 \text { and }\sqrt{3}x + y = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.18 [पृष्ठ १२४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.18 | Q 2 | पृष्ठ १२४

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×