हिंदी

The Line 2x + 3y = 12 Meets The X-axis At A And Y-axis At B. the Line Through (5, 5) Perpendicular To Ab Meets The X-axis and the Line Ab At C And E Respectively. If O Is the Origin of Coordinates, - Mathematics

Advertisements
Advertisements

प्रश्न

The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.

संक्षेप में उत्तर

उत्तर

The given line is 2x + 3y = 12, which can be written as

\[\frac{x}{6} + \frac{y}{4} = 1\]         ... (1)
So, the coordinates of the points A and B are (6, 0) and (0, 4), respectively.

The equation of the line perpendicular to line (1) is \[\frac{x}{4} - \frac{y}{6} + \lambda = 0\]

This line passes through the point (5, 5).

\[\therefore \frac{5}{4} - \frac{5}{6} + \lambda = 0\]

\[ \Rightarrow \lambda = - \frac{5}{12}\]

Now, substituting the value of \[\lambda\]  in \[\frac{x}{4} - \frac{y}{6} + \lambda = 0\] we get:

\[\frac{x}{4} - \frac{y}{6} - \frac{5}{12} = 0\]

\[ \Rightarrow \frac{x}{\frac{5}{3}} - \frac{y}{\frac{5}{2}} = 1 . . . (2)\]

Thus, the coordinates of intersection of line (1) with the x-axis is \[C \left( \frac{5}{3}, 0 \right)\].

To find the coordinates of E, let us write down equations (1) and (2) in the following manner: 

\[2x + 3y - 12 = 0\]            ... (3) 

\[3x - 2y - 5 = 0\]            .. (4)

Solving (3) and (4) by cross multiplication, we get:

\[\frac{x}{- 15 - 24} = \frac{y}{- 36 + 10} = \frac{1}{- 4 - 9}\]

\[ \Rightarrow x = 3, y = 2\]

Thus, the coordinates of E are (3, 2).
From the figure, \[EC = \sqrt{\left( \frac{5}{3} - 3 \right)^2 + \left( 0 - 2 \right)^2} = \frac{2\sqrt{13}}{3}\] 

\[EA = \sqrt{\left( 6 - 3 \right)^2 + \left( 0 - 2 \right)^2} = \sqrt{13}\]

Now,

\[\text { Area  }\left( OCEB \right) = \text { Area } \left( ∆ OAB \right) - \text { Area } \left( ∆ CAE \right)\]

\[ \Rightarrow \text { Area } \left( OCEB \right) = \frac{1}{2} \times 6 \times 4 - \frac{1}{2} \times \frac{2\sqrt{13}}{3} \times \sqrt{13}\]

\[ = \frac{23}{3} \text { sq units }\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.12 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.12 | Q 24 | पृष्ठ ९३

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×