हिंदी

In What Ratio is the Line Joining the Points (2, 3) and (4, −5) Divided by the Line Passing Through the Points (6, 8) and (−3, −2). - Mathematics

Advertisements
Advertisements

प्रश्न

In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).

संक्षेप में उत्तर

उत्तर

The equation of the line joining the points (6, 8) and (−3, −2) is

\[y - 8 = \frac{- 2 - 8}{- 3 - 6}\left( x - 6 \right)\]

\[ \Rightarrow 10x - 9y + 12 = 0\]

Let 10x − 9y + 12 = 0 divide the line joining the points (2, 3) and (4, −5) at point P in the ratio k : 1

\[\therefore P \equiv \left( \frac{4k + 2}{k + 1}, \frac{- 5k + 3}{k + 1} \right)\]

P lies on the line 10x − 9y + 12 = 0

\[\therefore 10\left( \frac{4k + 2}{k + 1} \right) - 9\left( \frac{- 5k + 3}{k + 1} \right) + 12 = 0\]

\[ \Rightarrow 40k + 20 + 45k - 27 + 12k + 12 = 0\]

\[ \Rightarrow 97k + 5 = 0\]

\[ \Rightarrow k = - \frac{5}{97}\]

Hence, the line joining the points (2, 3) and (4, −5) is divided by the line passing through the points (6, 8) and (−3, −2) in the ratio 5 : 97 externally.

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.5 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.5 | Q 9 | पृष्ठ ३५

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×