हिंदी

Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.

संक्षेप में उत्तर

उत्तर

The equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 is given below:
2x + y − 1 + λ (x + 3y − 2) = 0

\[\Rightarrow\] (2 + λ)x + (1 + 3λ)y − 1 − 2λ = 0 

\[\Rightarrow \frac{x}{\frac{1 + 2\lambda}{2 + \lambda}} + \frac{y}{\frac{1 + 2\lambda}{1 + 3\lambda}} = 1\]

So, the points of intersection of this line with the coordinate axes are \[\left( \frac{1 + 2\lambda}{2 + \lambda}, 0 \right) \text { and } \left( 0, \frac{1 + 2\lambda}{1 + 3\lambda} \right)\].

It is given that the required line makes an area of \[\frac{3}{8}\] square units with the coordinate axes.

\[\frac{1}{2}\left| \frac{1 + 2\lambda}{2 + \lambda} \times \frac{1 + 2\lambda}{1 + 3\lambda} \right| = \frac{3}{8}\]

\[ \Rightarrow 3\left| 3 \lambda^2 + 7\lambda + 2 \right| = 4\left| 4 \lambda^2 + 4\lambda + 1 \right|\]

\[ \Rightarrow 9 \lambda^2 + 21\lambda + 6 = 16 \lambda^2 + 16\lambda + 4\]

\[ \Rightarrow 7 \lambda^2 - 5\lambda - 2 = 0\]

\[ \Rightarrow \lambda = 1, - \frac{2}{7}\]

Hence, the equations of the required lines are

\[3x + 4y - 1 - 2 = 0 \text { and } \left( 2 - \frac{2}{7} \right)x + \left( 1 - \frac{6}{7} \right)y - 1 + \frac{4}{7} = 0\]

\[ \Rightarrow 3x + 4y - 3 = 0 \text { and } 12x + y - 3 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.19 [पृष्ठ १३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.19 | Q 8 | पृष्ठ १३१

संबंधित प्रश्न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through (0, 0) with slope m.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×