हिंदी

Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.

संक्षेप में उत्तर

उत्तर

The equation of the line with intercepts a and b is \[\frac{x}{a} + \frac{y}{b} = 1\]. 

Here, a + b = 7   

\[\Rightarrow\] b = 7 − a             ... (1)
The line passes through (−3, 8).

∴ \[\frac{- 3}{a} + \frac{8}{b} = 1\]      ... (2)

Substituting b = 7 − a in (2) we get,

\[\frac{- 3}{a} + \frac{8}{7 - a} = 1\]

\[ \Rightarrow - 3\left( 7 - a \right) + 8a = 7a - a^2 \]

\[ \Rightarrow a^2 + 4a - 21 = 0\]

\[ \Rightarrow \left( a - 3 \right)\left( a + 7 \right) = 0\]

\[ \Rightarrow a = 3, a \neq - 7 \left( \because \text { a is positive } \right)\]

Substituting a = 3 in (1) we get,
b = 7 − 3 = 4
Hence, the equation of the line is \[\frac{x}{3} + \frac{y}{4} = 1\]  or 4x + 3y = 12

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.6 | Q 10 | पृष्ठ ४७

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + b, a − b)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×