हिंदी

Find the Equation of the Straight Line Passing Through the Origin and Bisecting the Portion of the Line Ax + by + C = 0 Intercepted Between the Coordinate Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.

संक्षेप में उत्तर

उत्तर

The equation of the line passing through the origin is y = mx.
Let the line ax + by + c = 0 meet the coordinate axes at A and B.
So, the coordinates of A and B are \[A \left( - \frac{c}{a}, 0 \right) \text { and }B \left( 0, - \frac{c}{b} \right)\].

Now, the midpoint of AB is \[\left( - \frac{c}{2a}, - \frac{c}{2b} \right)\].

Clearly, \[\left( - \frac{c}{2a}, - \frac{c}{2b} \right)\] lies on the line y = mx.

\[\therefore - \frac{c}{2b} = m \times \frac{- c}{2a}\]

\[ \Rightarrow m = \frac{a}{b}\] 

Hence, the equation of the required line is 

\[y = \frac{a}{b}x\]

\[ \Rightarrow ax - by = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.6 | Q 19 | पृष्ठ ४७

संबंधित प्रश्न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + b, a − b)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×