हिंदी

Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.

संक्षेप में उत्तर

उत्तर

Solving the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0  we get:

\[\frac{x}{21 - 56} = \frac{y}{70 + 14} = \frac{1}{8 + 15}\]

\[ \Rightarrow x = - \frac{35}{23}, y = \frac{84}{23}\]

So, the point of intersection of 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0 is \[\left( - \frac{35}{23}, \frac{84}{23} \right)\] .

The equation of the line passing through the origin and the point \[\left( - \frac{35}{23}, \frac{84}{23} \right)\]  is 

\[y - 0 = \frac{\frac{84}{23} - 0}{\frac{- 35}{23} - 0}\left( x - 0 \right)\]

\[ \Rightarrow y = \frac{84}{- 35}x\]

\[ \Rightarrow y = - \frac{12}{5}x\]

\[ \Rightarrow 12x + 5y = 0\]

Let d be the perpendicular distance of the line 12x + 5y = 0 from the point (4, −7)
\[\therefore d = \left| \frac{48 - 35}{\sqrt{{12}^2 + 5^2}} \right| = \frac{13}{13} = 1\].
shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: The straight lines - Exercise 23.15 [पृष्ठ १०८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 23 The straight lines
Exercise 23.15 | Q 6 | पृष्ठ १०८

संबंधित प्रश्न

Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + b, a − b)


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×